l year (1st semester) A.Y. 2021-2022	Scientific Field	PHYSICS AND STATISTICS	TUTOR	ECTS
	FIS/07	Applied Physics (Medicine)	Toschi Nicola	5
		Applied Physics (Medicine)	Conti Allegra	2
TOSCHI N. COORDINATOR	FIS/07	Informatics	Duggento Andrea	2
	FIS/07	Medical Statistics	Toschi Nicola	3
			тот	12

PROGRAM	Chapter 1: Introduction, Measurement, Estimating
	Chapter 2: Describing Motion: Kinematics in One Dimension
MEDICAL PHYSICS	Chapter 3: Kinematics in Two Dimensions; Vectors
MECHANICS	Chapter 4: Dynamics: Newton's Laws of Motion
	Chapter 5: Circular Motion; Gravitation
	Chapter 6: Work and Energy
	Chapter 7: Linear Momentum
	Chapter 8: Rotational Motion
	Chapter 9: Static Equilibrium; Elasticity and Fracture

TOPICS	1.1: The Nature of Science
	1.2: Physics and its Relation to Other Fields
INTRODUCTION.	1.3: Models, Theories, and Laws
MEASUREMENT.	1.4: Measurement and Uncertainty; Significant Figures
ESTIMATING	1.5: Units, Standards, and SI Units
	1.6: Converting Units
	1.7: Order of Magnitude: Rapid Estimating
	1.8: Dimensions and Dimensional Analysis

TOPICS DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION	 2.1: References Frames and Displacement 2.2: Average Velocity 2.3: Instantaneous Velocity 2.4: Acceleration 2.5: Motion at Constant Acceleration 2.6: Solving Problems 2.7: Falling Objects 2.8: Graphical Analysis of Linear Motion
TOPICS	3.1: Vectors and Scalars
KINEMATICS IN TWO DIMENSIONS; VECTORS	 3.2: Addition of Vectors-Graphical Methods 3.3: Subtraction of Vectors and Multiplication of a Vector By a Scalar 3.4: Adding Vectors by Components
TOPICS DYNAMICS: NEWTON'S LAWS OF MOTION	 4.1: Force 4.2: Newton's First Law of Motion 4.3: Mass 4.4: Newton's Second Law of Motion 4.5: Newton's Third Law of Motion 4.6: Weight-The Force of Gravity; and the Normal Force 4.7: Solving Problems with Newton's Laws: Free-Body Diagrams 4.8: Problems Involving Friction, Inclines 4.9: Problem Solving-A General Approach
TODICS	5.1: Kinematics of Uniform Circular Motion
TOPICS	5.2: Dynamics of Uniform Circular Motion
CIRCULAR MOTION; GRAVITATION	 5.3: Highway Curves, Banked and Unbanked 5.4: Nonuniform Circular Motion 5.5: Centrifugation 5.6: Newton's Law of Universal Gravitation 5.7: Gravity Near the Earth's Surface; Geophysical Applications 5.10: Types of Forces in Nature

TOPICS WORK AND ENERGY	 6.1: Work Done by a Constant Force 6.2: Work Done by a Varying Force 6.3: Kinetic Energy and the Work-Energy Principle 6.4: Potential Energy 6.5: Conservative and Nonconservative Forces 6.6: Mechanical Energy and its Conservation 6.7: Problem Solving Using Conservation of Mechanical Energy 6.8: Other Forms of Energy: Energy Transformations and the Law of Conservation of Energy 6.9: Energy Conservation with Dissipative Forces: Solving Problems 6.10:Power
TOPICS LINEAR MOMENTUM	 7.1: Momentum and Its Relation to Force 7.2: Conservation of Momentum 7.3: Collisions and Impulse 7.4: Conservation of Energy and Momentum in Collisions 7.5: Elastic Collisions in One Dimension 7.6: Inelastic Collisions 7.7: Collisions in Two or Three Dimensions 7.8: Center of Mass (CM) 7.9: CM of the Human Body 7.10: Center of Mass and Translational Motion
TOPICS ROTATIONAL MOTION	 8.1: Angular Quantities 8.2: Constant Angular Acceleration 8.4: Torque 8.5: Rotational Dynamics; Torque and Rotational Inertia 8.6: Solving Problems in Rotational Dynamics 8.7: Rotational Kinetic Energy 8.9: Vector Nature of Angular Quantities
TOPICS STATIC EQUILIBRIUM; ELASTICITY AND FRACTURE	 9.1: The Conditions for Equilibrium 9.2: Solving Statics Problems 9.3: Applications to Muscles and Joints 9.4: Stability and Balance 9.5: Elasticity; Stress and Strain 9.6: Fracture

PROGRAM	Chapter 16: Electric Charge and Electric Field
	Chapter 17: Electric Potential
MEDICAL PHYSICS	Chapter 18: Electric Currents
ELECTRICITY AND	Chapter 19: DC Circuits
MAGNETISM	Chapter 20: Magnetism
	Chapter 21: Electromagnetic Induction and Faraday's Law

TOPICS ELECTRIC CHARGE AND ELECTRIC FIELD	 16.1: Static Electricity; Electric Charge and its Conservation 16.2: Electric Charge in the Atom 16.3: Insulators and Conductors 16.4: Induced Charge; the Electroscope 16.5: Coulomb's Law 16.6: Solving Problems Involving Coulomb's Law and Vectors 16.7: The Electric Field 16.8: Field Lines 16.9: Electric Fields and Conductors 16.10: Gauss's Law 16.11: Electric Forces in Molecular Biology: DNA Structures and Replication
TOPICS ELECTRIC POTENTIAL	 17.1: Electric Potential Energy and Potential Differences 17.2: Relation Between Electric Potential and Electric Field 17.3: Equipotential Lines 17.4: The Electron Volt, a Unit of Energy 17.5: Electric Potential Due to Point Charges 17.7: Capacitance 17.8: Dielectrics 17.9: Storage of Electric Energy 17.11: The Electrocardiogram (ECG or EKG)
TOPICS ELECTRIC CURRENTS	 18.1: The Electric Battery 18.2: The Electric Current 18.3: Ohm's Law: Resistance and Resistors 18.4: Resistivity 18.5: Electric Power 18.8: Microscopic View of Electric Current 18.10: Electrical Conduction in the Human Nervous System

TOPICS DC CIRCUITS	 19.1: EMF and Terminal Voltage 19.2: Resistors in Series and in Parallel 19.3: Kirchhoff's Rules 19.4: EMFs in Series and in Parallel; Charging a Battery 19.5: Circuits Containing Capacitors in Series and in Parallel 19.6: RC Circuits-Resistor and Capacitor in Series 19.7: Electric Hazards
TOPICS	Chapter 20: Magnetism 20.1: Magnets and Magnetic Fields
MAGNETISM	 20.2: Electric Current Produce Magnetic Fields 20.3: Force on an Electric Current in a Magnetic Field: Definition of B 20.4: Force on a Electric Charge Moving in a Magnetic Field 20.5: Magnetic Field Due to a Long Straight Wire 20.8: Ampere's Law 20.9: Torque on a Current Loop; Magnetic Moment 20.11: Mass Spectrometer

TOPICS	21.1: Induced EMF
	21.2: Faraday's Law of Induction; Lenz's Law
ELECTROMAGNETIC	21.3: EMF Induced in a Moving Conductor
INDUCTION AND	21.4: Changing Magnetic Flux Produces an Electric Field
FARADAY'S LAW	21.8: Applications of Induction: Sound Systems, Computer Memory, Seismograph, GFCI

PROGRAM MEDICAL PHYSICS VIBRATIONS AND WAVES	Chapter 11: Vibrations and Waves Chapter 12: Sound Chapter 22: Electromagnetic Waves Chapter 24: The Wave Nature of Light

TOPICS VIBRATIONS AND WAVES	 11.7: Wave Motion 11.8: Types of Waves: Transverse and Longitudinal 11.9: Energy Transported by Waves 11.10: Intensity Related to Amplitude and Frequency 11.11: Reflection and Transmission of Waves 11.12: Interference; Principle of Superposition 11.13: Standing Waves; Resonance
TOPICS	12-1 Characteristics of Sound 12-2 Intensity of Sound: Decibels *12-3 The Ear and Its Response; Loudness
	 12-4 Sources of Sound: Vibrating Strings and Air Columns *12-5 Quality of Sound, and Noise; Superposition 12-6 Interference of Sound Waves; Beats 12-7 Doppler Effect *12-8 Shock Waves and the Sonic Boom * 12-9 Applications: Sonar, Ultrasound, and Medical Imaging
TOPICS ELECTROMAGNETIC WAVES	22.1: Changing Electric Fields Produce Magnetic Fields; Maxwell's Equations 22.2: Production of Electromagnetic Waves 22.3: Light as an Electromagnetic Wave and the Electromagnetic Spectrum 22.5: Energy in EM Waves
TOPICS	24.4: The Visible Spectrum and Dispersion
THE WAVE NATURE OF LIGHT	
PROGRAM	Chapter 27: Early Quantum Theory and Models of the Atom
MEDICAL PHYSICS NUCLEAR PHYSICS AND RADIOACTIVITY	Chapter 30: Nuclear Physics and Radioactivity Chapter 31: Nuclear Energy; Effects and Uses of Radiation

TOPICS EARLY QUANTUM THEORY AND MODELS OF THE ATOM	 27.1 Discovery and Properties of the Electron 27.2: Planck's Quantum Hypothesis; Blackbody Radiation 27.10: Early Models of the Atom 27.11: Atomic Spectra: Key to the Structure of the Atom 27.12: The Bohr Model
T00100	
NUCLEAR PHYSICS AND	30.1: Structure and Properties of the Nucleus 30.2: Binding Energy and Nuclear Forces 30.3: Radioactivity
RADIOACTIVITY	30.4: Alpha Decay 30.5: Beta Decay 30.6: Gamma Decay 30.7: Conservation of Nucleon Number and Other Conservation Laws 30.8: Half-Life and Rate of Decay 30.9: Calculations Involving Decay Rates and Half-life 30.10: Decay Series 30.11: Radioactive Dating 30.13: Detection of Radiation
	31.1: Nuclear Reaction and the Transmutation of Elements 31.4: Passage of Radiation Through Matter; Radiation Damage 31.5: Measurement of Radiation-Dosimetry
EFFECTS AND USES OF RADIATION	31.6: Radiation Therapy 31.7: Tracers and Imaging in Medicine 31.8: Emission Tomography 31.9: Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)
PROGRAM MEDICAL PHYSICS THERMODYNAMICS	Chapter 13: Temperature and Kinetic Theory Chapter 14: Heat Chapter 15: The Laws of Thermodynamics

TOPICS TEMPERATURE AND KINETIC THEORY	 13.1: Atomic Theory of Matter 13.2: Temperature and Thermometers 13.3: Thermal Equilibrium and the Zeroth Law of Thermodynamics 13.4: Thermal Expansion 13.6: The Gas Laws and Absolute Temperature 13.7: The Ideal Gas Law 13.8: Problem Solving with the Ideal Gas Law 13.9: Ideal Gas Law in Terms of Molecules: Avogadro's Number 13.10: Kinetic Theory and the Molecular Interpretation of Temperature
TOPICS HEAT	 14.1 Heat as Energy Transfer 14.2 Internal Energy 14.3: Specific Heat 14.4: Calorimetry 14.5: Latent Heat 14.6: Heat Transfer: Conduction 14.7: Heat Transfer: Convection 14.8: Heat Transfer: Radiation
TOPICS THE LAWS OF THERMODYNAMICS	15.1: The First Law of Thermodynamics 15.2: Thermodynamic Processes and the First Law 15.3: Human Metabolism and the First Law 15.4: Second Law of Thermodynamics-Introduction 15.7: Entropy and the Second Law of Thermodynamics

PROGRAM

Chapter 10: Fluids

MEDICAL PHYSICS

FLUIDS	
TOPICS	10.1: Phases of Matter
FLUIDS	10.3: Pressure in Fluids 10.4: Atmospheric Pressure Gauge Pressure 10.5: Pascal's Principle
	10.6: Measurement of Pressure; Gauges and the Barometer
	10.7: Buoyancy and Archimedes' Principle
	10.9: Bernoulli's Principle
	10.10: Applications of Bernoulli's Principle: from Torricelli to Airplanes, Baseballs, and TIA
	10.11: Viscosity
	10.12: Flow in Tubes: Poiseuille's Equation, Blood Flow
	10.14: Pumps and the Heart

TEXTBOOKS	"PHYSICS: Principles with Applications" - Douglas C. Giancoli - Sixth edition, Pearson Education. Inc, ISBN 0-13-060620-0	
EXAM METHOD	 You will be required to attend independent examinations for both the Physics and the Statistics courses. You will be able to take both the Physics and Statistics exams either a) during the same exam session or b) during separate exam sessions, as long as both exams are taken within the same academic year. You will receive a single grade for the Integrated Course in Physics and Statistics, which will be 	

weighted average of the two grades obtained in Physics and Statistics. The weight will be the credit hours assigned
to each course.
- Final Physics and Statistics grade = (0.7 Physics grade) + (0.3 Statistics grade)
PHYSICS COURSE:
You will undergo a written assessment composed of multiple choice questions and problems.
If your score is:
- Below 15: exam failed
- Between 15 (included) and 17 (included): attend compulsory oral examination or withdraw (exam
failed)
- 18 or more: keep this as your final grade or attend optional oral examination.

EXAM COMMISSION

The Coordinator, full Professors of the disciplines, Professors of similar disciplines, Specialists of the subject, compose the exam Commission of the Integrated Course.

Toschi Nicola, President Duggento Andrea

CONTACTS

Toschi Nicola	toschi@med.uniroma2.it	0672596008
Duggento Andrea	Duggento#med.uniroma2.it	

PREREQUISITES: Previous knowledge and competence in Basic Physics and Statistics.

The specific learning outcomes of the program are coherent with the general provisions of the Bologna Process and the specific provisions of EC Directive 2005/36/EC. They lie within the European Qualifications Framework (Dublin Descriptors) as follows:

1. Knowledge and Understanding

- Demonstrate a comprehensive theoretical knowledge of the main physical principles and laws concerning kinetics, dynamics, electricity and magnetism, vibration and waves, radiation and nuclear physics and fluids dynamics.
- Understand the important conceptual models used in the core subject areas of physics, demonstrate the ability to correctly draw logical conclusions from these models and use them to make accurate quantitative predictions in realistic situations.
- Apply these concepts to the medical setting and understand their relationships with the physiological mechanisms which govern the human body as well as their application in the construction of diagnostic equipment.
- Identify and recognize the physical principles which govern the function of the specific human organs; demostrate the importance of their regulation in order to maintain equilibrium.
- Study the main statistical terms and notions and understand their application.

2. Applying Knowledge and Understanding

- Apply the principles of physics to selected problems and to a variable range of situations.
- Bring into play the statistical concepts in the analysis of clinical data and and their application in the conduction of clinical studies.
- Use the tools, methodologies, language and conventions of physics to test and communicate ideas and explanations.
- Learn how to conduct scientific experiments for the purpose of solving a scientific problem and to record and analyze the results

3. Making Judgements

- Recognize the importance of an in-depth knowledge of the topics consistent with a proper medical education.
- Identify the fundamental role of a proper theoretical knowledge of the subject in the clinical practice.

4. Communication Skills

- Present the topics orally in a organized and consistent manner.
- Utilize a proper scientific language coherent with the topic of discussion.

5. Learning Skills

- ٠
- Identify possible use of skills acquired during the course in the future career. Assess the importance of the acquired knowledge in the overall medical education process. •